Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
2.
Life Sci ; 340: 122424, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38242497

ABSTRACT

Inflammatory Bowel Disease (IBD) is a chronic and relapsing inflammatory condition characterized by severe symptoms such as diarrhea, fatigue, and weight loss. Growing evidence underscores the direct involvement of the nuclear factor-erythroid 2-related factor 2 (NRF2) in the development and progression of IBD, along with its associated complications, including colorectal cancer. The NRF2 pathway plays a crucial role in cellular responses to oxidative stress, and dysregulation of this pathway has been implicated in IBD. Flavones, a significant subclass of flavonoids, have shown pharmacological impacts in various diseases including IBD, through the NRF2 signaling pathway. In this study, we conducted a screening of compounds with a flavone structure and identified NJK15003 as a promising NRF2 activator. NJK15003 demonstrated potent NRF2 activation, as evidenced by the upregulation of downstream proteins, promoter activation, and NRF2 nuclear translocation in IBD cellular models. Treatment with NJK15003 effectively restored the protein levels of tight junctions in cells treated with dextran sodium sulfate (DSS) and in DSS-treated mice, suggesting its potential to protect cells from barrier integrity disruption in IBD. In DSS-treated mice, the administration of NJK15003 resulted in the prevention of body weight loss, a reduction in colon length shortening, and a decrease in the disease activity index. Furthermore, NJK15003 treatment substantially alleviated inflammatory responses and apoptotic cell death in the colon of DSS-treated mice. Taken together, this study proposes the potential utility of NRF2-activating flavone compounds, exemplified by NJK15003, for the treatment of IBD.


Subject(s)
Colitis , Flavones , Inflammatory Bowel Diseases , Sulfates , Mice , Animals , NF-E2-Related Factor 2/metabolism , Dextrans/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Flavones/pharmacology , Flavones/therapeutic use , Inflammatory Bowel Diseases/chemically induced , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Disease Models, Animal , Colon/metabolism
3.
CNS Neurosci Ther ; 30(4): e14509, 2024 04.
Article in English | MEDLINE | ID: mdl-37904343

ABSTRACT

AIMS: Cognitive impairment is associated with reduced hippocampal neurogenesis; however, the causes of decreased hippocampal neurogenesis remain highly controversial. Here, we investigated the role of survivin in the modulation of hippocampal neurogenesis in AD. METHODS: To investigate the effect of survivin on neurogenesis in neural stem cells (NSCs), we treated mouse embryonic NSCs with a survivin inhibitor (YM155) and adeno-associated viral survivin (AAV-Survivin). To explore the potential role of survivin expression in AD, AAV9-Survivin or AAV9-GFP were injected into the dentate gyrus (DG) of hippocampus of 7-month-old wild-type and 5XFAD mice. Cognitive function was measured by the Y maze and Morris water maze. Neurogenesis was investigated by BrdU staining, immature, and mature neuron markers. RESULTS: Our results indicate that suppression of survivin expression resulted in decreased neurogenesis. Conversely, overexpression of survivin using AAV-Survivin restored neurogenesis in NSCs that had been suppressed by YM155 treatment. Furthermore, the expression level of survivin decreased in the 9-month-old 5XFAD compared with that in wild-type mice. AAV-Survivin-mediated overexpression of survivin in the DG in 5XFAD mice enhanced neurogenesis and cognitive function. CONCLUSION: Hippocampal neurogenesis can be enhanced by survivin overexpression, suggesting that survivin could serve as a promising therapeutic target for the treatment of AD.


Subject(s)
Alzheimer Disease , Animals , Mice , Alzheimer Disease/drug therapy , Survivin/pharmacology , Survivin/therapeutic use , Hippocampus , Neurogenesis/physiology , Cognition , Disease Models, Animal , Mice, Transgenic
4.
J Neuroinflammation ; 20(1): 282, 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38012646

ABSTRACT

BACKGROUND: The gut microbiota has recently attracted attention as a pathogenic factor in Alzheimer's disease (AD). Microfold (M) cells, which play a crucial role in the gut immune response against external antigens, are also exploited for the entry of pathogenic bacteria and proteins into the body. However, whether changes in M cells can affect the gut environments and consequently change brain pathologies in AD remains unknown. METHODS: Five familial AD (5xFAD) and 5xFAD-derived fecal microbiota transplanted (5xFAD-FMT) naïve mice were used to investigate the changes of M cells in the AD environment. Next, to establish the effect of M cell depletion on AD environments, 5xFAD mice and Spib knockout mice were bred, and behavioral and histological analyses were performed when M cell-depleted 5xFAD mice were six or nine months of age. RESULTS: In this study, we found that M cell numbers were increased in the colons of 5xFAD and 5xFAD-FMT mice compared to those of wild-type (WT) and WT-FMT mice. Moreover, the level of total bacteria infiltrating the colons increased in the AD-mimicked mice. The levels of M cell-related genes and that of infiltrating bacteria showed a significant correlation. The genetic inhibition of M cells (Spib knockout) in 5xFAD mice changed the composition of the gut microbiota, along with decreasing proinflammatory cytokine levels in the colons. M cell depletion ameliorated AD symptoms including amyloid-ß accumulation, microglial dysfunction, neuroinflammation, and memory impairment. Similarly, 5xFAD-FMT did not induce AD-like pathologies, such as memory impairment and excessive neuroinflammation in Spib-/- mice. CONCLUSION: Therefore, our findings provide evidence that the inhibiting M cells can prevent AD progression, with therapeutic implications.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/pathology , Microglia/metabolism , M Cells , Neuroinflammatory Diseases , Amyloid beta-Peptides/metabolism , Memory Disorders , Mice, Knockout , Phenotype , Disease Models, Animal , Mice, Transgenic
5.
Phytomedicine ; 118: 154930, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37348246

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by the accumulation of amyloid-ß (Aß) and excessive neuroinflammation, resulting in neuronal cell death and cognitive impairments. Eugenol, a phenylpropene, is the main component of Syzygium aromaticum L. (Myrtaceae) and has multiple therapeutic effects, including neuroprotective and anti-inflammatory effects, through multimodal mechanisms. PURPOSE: We aimed to investigate the effect of eugenol on AD pathologies using a 5× familiar AD (5×FAD) mouse model. METHODS: Eight-month-old 5×FAD and wild-type mice were administered with eugenol (10 or 30 mg/kg/day, p.o) for 2 months. Y-maze and Morris water maze tests were performed to assess the cognitive function of mice. After the behavioral test, molecular analysis was conducted to investigate the therapeutic mechanism of eugenol. RESULTS: Our findings indicate that eugenol treatment effectively mitigated cognitive impairments in 5×FAD mice. This beneficial effect was associated with a decrease in AD pathologies, including neuronal cell loss and Aß deposition. Specifically, eugenol inhibited necroptosis activation and increased microglial phagocytosis, which were the underlying mechanisms for the observed reductions in neuronal cell loss and Aß deposition, respectively. CONCLUSION: Overall, our data suggest that eugenol would be a potential therapeutic candidate for AD.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/metabolism , Eugenol/pharmacology , Eugenol/therapeutic use , Mice, Transgenic , Amyloid beta-Peptides/metabolism , Disease Models, Animal
6.
Phytother Res ; 37(7): 2854-2863, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36814130

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease characterized by amyloid-ß (Aß) deposition, accompanied by neuroinflammation and memory dysfunction. Houttuyniae Herba (aerial parts of Houttuynia cordata, also known as fish mint; HH), an herbal medicine traditionally used to treat fever, urinary disorders, and pus, is revealed to protect neurons from Aß toxicity and regulate cholinergic dysfunction in AD models. In this study, we aimed to investigate the effects of HH on excessive accumulation of Aß followed by neuroinflammation, synaptic degeneration, and memory impairment. Two-month-old 5xFAD transgenic mice were administered HH at 100 mg/kg for 4 months. We observed that HH treatment ameliorated memory impairment and reduced Aß deposits in the brains of the mice. HH directly inhibited Aß aggregation in vitro using the Thioflavin T assay and indirectly suppressed the amyloidogenic pathway by increasing alpha-secretase expression in the mice brain. In addition, HH exerted antineuroinflammatory effects by reducing of glial activation and p38 phosphorylation. Moreover, HH treatment increased the expression of synaptophysin, a presynaptic marker protein. Overall, HH alleviates memory impairment in AD by facilitating nonamyloidogenic pathway and inhibiting neuroinflammation. Therefore, we suggest that HH can be a promising herbal drug for patients with AD requiring multifaceted improvement.


Subject(s)
Alzheimer Disease , Houttuynia , Neurodegenerative Diseases , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Houttuynia/metabolism , Neuroinflammatory Diseases , Mice, Transgenic , Plant Components, Aerial , Disease Models, Animal
7.
Nutrients ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956303

ABSTRACT

Alzheimer's disease (AD) is an irreversible neurodegenerative disease characterized by memory and cognitive impairments. Neurogenesis, which is related to memory and cognitive function, is reduced in the brains of patients with AD. Therefore, enhancing neurogenesis is a potential therapeutic strategy for neurodegenerative diseases, including AD. Hesperidin (HSP), a bioflavonoid found primarily in citrus plants, has anti-inflammatory, antioxidant, and neuroprotective effects. The objective of this study was to determine the effects of HSP on neurogenesis in neural stem cells (NSCs) isolated from the brain of mouse embryos and five familial AD (5xFAD) mice. In NSCs, HSP significantly increased the proliferation of NSCs by activating adenosine monophosphate (AMP)-activated protein kinase (AMPK)/cAMP-response element-binding protein (CREB) signaling, but did not affect NSC differentiation into neurons and astrocytes. HSP administration restored neurogenesis in the hippocampus of 5xFAD mice via AMPK/brain-derived neurotrophic factor/tropomyosin receptor kinase B/CREB signaling, thereby decreasing amyloid-beta accumulation and ameliorating memory dysfunction. Collectively, these preclinical findings suggest that HSP is a promising candidate for the prevention and treatment of AD.


Subject(s)
Alzheimer Disease , Hesperidin , Neurodegenerative Diseases , AMP-Activated Protein Kinases/metabolism , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Hesperidin/metabolism , Hesperidin/pharmacology , Hesperidin/therapeutic use , Hippocampus/metabolism , Mice , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Neurogenesis
8.
Nutr Neurosci ; 25(9): 1940-1947, 2022 Sep.
Article in English | MEDLINE | ID: mdl-33877009

ABSTRACT

OBJECTIVES: Amyloid beta (Aß)-induced abnormal neuroinflammation is recognized as a major pathological factor of Alzheimer's disease (AD), which results in memory impairment. Inhibition of excessive neuroinflammation mediated by Aß is considered a promising strategy to ameliorate AD symptoms. To regulate the inflammatory response, nutritional and dietary supplements have been used for centuries. Based on this idea, we investigated whether MBN, a novel nutritional mixture including cassia bark, turmeric root, and ginkgo leaf, can prevent AD progression through neuroinflammatory regulation. METHODS: MBN (10, 30, or 100 µg/ml) and Aß1-42 monomer were incubated together, and the degree of Aß aggregation was measured using Thioflavin T assay. The effects of MBN on Aß pathology in vivo were evaluated by orally administering MBN (40 mg/kg/day for 16 weeks) to five familial AD (5xFAD) mice. RESULTS: We found that treatment with MBN inhibited Aß aggregation in vitro. Next, MBN treatment significantly inhibited the activation of microglia induced by aggregated Aß in 5xFAD mice. Caspase-1 activation, which plays an important role in the maturation of interleukin-1ß, was markedly reduced by MBN. We also found that oral administration of MBN in 5xFAD mice alleviated memory decline. Taken together, our findings demonstrate that MBN suppresses neuroinflammation by downregulating the caspase-1 expression, thereby ameliorating memory impairment in 5xFAD mice. DISCUSSION: Based on these results, we suggest that MBN may be a preventive and therapeutic supplement for AD through the regulation of neuroinflammation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Caspases/therapeutic use , Disease Models, Animal , Inflammasomes/therapeutic use , Interleukin-1beta , Memory Disorders/pathology , Memory Disorders/prevention & control , Mice , Mice, Transgenic , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
9.
Antioxidants (Basel) ; 12(1)2022 Dec 31.
Article in English | MEDLINE | ID: mdl-36670968

ABSTRACT

Neuroinflammation causes various neurological disorders, including depression and neurodegenerative diseases. Therefore, regulation of neuroinflammation is a promising therapeutic strategy for inflammation-related neurological disorders. This study aimed to investigate whether yomogin, isolated from Artemisia iwayomogi, has anti-neuroinflammatory effects. First, we evaluated the effects of yomogin by assessing pro-inflammatory mediators and cytokines in lipopolysaccharide (LPS)-stimulated BV2 microglial cells. The results showed that yomogin inhibited the increase in neuroinflammatory factors, including nitric oxide, inducible nitric oxide synthase, cyclooxygenase-2, interleukin-6, and tumor necrosis factor-α, and suppressed phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase and p38, which participate in the mitogen-activated protein kinase (MAPK) pathway. To confirm these effects in vivo, we measured the activation of astrocyte and microglia in LPS-injected mouse brains. Results showed that yomogin treatment decreased astrocyte and microglia activations. Collectively, these results suggest that yomogin suppresses neuroinflammation by regulating the MAPK pathway and it could be a potential candidate for inflammation-mediated neurological diseases.

10.
Brain Behav Immun ; 98: 357-365, 2021 11.
Article in English | MEDLINE | ID: mdl-34500036

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that causes memory and cognitive decline. Although many studies have attempted to clarify the causes of AD occurrence, it is not clearly understood. Recently, the emerging role of the gut microbiota in neurodegenerative diseases, including AD, has received much attention. The gut microbiota composition of AD patients and AD mouse models is different from that of healthy controls, and these changes may affect the brain environment. However, the specific mechanisms by which gut microbiota that influence memory decline are currently unclear. In this study, we performed fecal microbiota transplantation (FMT) to clarify the role of 5xFAD mouse-derived microbiota in memory decline. We observed that FMT from 5xFAD mice into normal C57BL/6 mice (5xFAD-FMT) decreased adult hippocampal neurogenesis and brain-derived neurotrophic factor expression and increased p21 expression, resulting in memory impairment. Microglia in the hippocampus of the 5xFAD-FMT mice were activated, which caused the elevation of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß). Moreover, we observed that pro-inflammatory cytokines increased in the colon and plasma of 5xFAD-FMT mice. The gut microbiota composition of the 5xFAD-FMT mice was different from that of the control mice or wild type-FMT mice. Collectively, 5xFAD mouse-derived microbiota decreased neurogenesis by increasing colonic inflammation, thereby contributing to memory loss. Our findings provide further evidence concerning the role of gut microbial dysbiosis in AD pathogenesis and suggest that targeting the gut microbiota may be a useful therapeutic strategy for the development of novel candidates for the treatment of AD.


Subject(s)
Alzheimer Disease , Gastrointestinal Microbiome , Neurodegenerative Diseases , Animals , Humans , Mice , Mice, Inbred C57BL , Neurogenesis
11.
Phytomedicine ; 84: 153501, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33626425

ABSTRACT

BACKGROUND: Neuroinflammation plays a major role in the development of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The regulation of microglia is an efficient therapeutic approach to controlling neuroinflammation. PURPOSE: In this study, we aimed to determine whether Artemisiae Iwayomogii Herba (AIH), which is herbal medicine traditionally used for inflammation-related disorders, controls neuroinflammatory responses by regulating the microglia-mediated signaling pathway. METHODS: BV-2 microglial cells were treated with AIH and lipopolysaccharides (LPS), then various pro-inflammatory mediators were analyzed using griess reaction, quantitative reverse-transcription polymerase chain reaction, or western blotting. C57BL/6 J mice were orally administered by AIH for 17 days and intraperitoneally injected with LPS for the last 14 days. The brains were collected and the microglial activation and nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) expression in the cortex and hippocampus were analyzed using immunohistochemistry or western blotting. RESULTS: In BV-2 microglial cells, we found that AIH inhibited nitric oxide (NO) production induced by LPS. AIH also suppressed the expressions of pro-inflammatory mediators, including inducible NO synthase, cyclooxygenase-2, tumor necrosis factor-α, and interleukin-6. The study also revealed that the effects of AIH are related to the regulation of the nuclear factor kappa B (NF-κB) and the mitogen-activated protein kinase (MAPK) signaling pathway. Additionally, we found that AIH prevented the formation of NLRP3 inflammasomes. Consistent with the results of in vitro studies on the brains of LPS-injected mice, we observed that AIH suppressed microglial activation and NLRP3 expression. CONCLUSION: Taken together, these results suggest that AIH attenuates neuroinflammation by regulating the NF-κB and MAPK pathways, and it may be used for treating neurological diseases.


Subject(s)
Inflammation/drug therapy , Microglia/drug effects , NF-kappa B/metabolism , Plant Preparations/pharmacology , Animals , Artemisia/chemistry , Cell Line , Cyclooxygenase 2/metabolism , Inflammation/chemically induced , Inflammation/metabolism , Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , MAP Kinase Signaling System/drug effects , Male , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Plant Preparations/chemistry , Tumor Necrosis Factor-alpha/metabolism
12.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182586

ABSTRACT

Alzheimer's disease (AD), a type of dementia, is the most common neurodegenerative disease in the elderly. Neuroinflammation caused by deposition of amyloid ß (Aß) is one of the most important pathological causes in AD. The isoprenoid phytohormone abscisic acid (ABA) has recently been found in mammals and was shown to be an endogenous hormone, acting in stress conditions. Although ABA has been associated with anti-inflammatory effects and reduced cognitive impairment in several studies, the mechanisms of ABA in AD has not been ascertained clearly. To investigate the clearance of Aß and anti-inflammatory effects of ABA, we used quantitative real-time polymerase chain reaction and immunoassay. ABA treatment inhibited Aß deposition and neuroinflammation, thus resulting in improvement of memory impairment in 5xFAD mice. Interestingly, these effects were not associated with activation of peroxisome proliferator-activated receptor gamma, well known as a molecular target of ABA, but related with modulation of the LanC-like protein 2 (LANCL2), known as a receptor of ABA. Taken together, our results indicate that ABA reduced Aß deposition, neuroinflammation, and memory impairment, which is the most characteristic pathology of AD, via the upregulation of LANCL2. These data suggest that ABA might be a candidate for therapeutics for AD treatment.


Subject(s)
Abscisic Acid/pharmacology , Membrane Proteins/metabolism , Memory Disorders/drug therapy , Neurodegenerative Diseases/drug therapy , Phosphate-Binding Proteins/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Disease Models, Animal , Female , Humans , Male , Memory Disorders/metabolism , Memory Disorders/pathology , Mice , Mice, Mutant Strains , Mice, Transgenic , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , PPAR gamma/metabolism , Plant Growth Regulators/pharmacology , Presenilin-1/genetics , Presenilin-1/metabolism , Up-Regulation/drug effects
13.
Int J Mol Sci ; 21(12)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599846

ABSTRACT

Abnormal amyloid-ß (Aß) accumulation is the most significant feature of Alzheimer's disease (AD). Among the several secretases involved in the generation of Aß, ß-secretase (BACE1) is the first rate-limiting enzyme in Aß production that can be utilized to prevent the development of Aß-related pathologies. Cinnamon extract, used in traditional medicine, was shown to inhibit the aggregation of tau protein and Aß aggregation. However, the effect of trans-cinnamaldehyde (TCA), the main component of cinnamon, on Aß deposition is unknown. Five-month-old 5XFAD mice were treated with TCA for eight weeks. Seven-month-old 5XFAD mice were evaluated for cognitive and spatial memory function. Brain samples collected at the conclusion of the treatment were assessed by immunofluorescence and biochemical analyses. Additional in vivo experiments were conducted to elucidate the mechanisms underlying the effect of TCA in the role of Aß deposition. TCA treatment led to improvements in cognitive impairment and reduced Aß deposition in the brains of 5XFAD mice. Interestingly, the levels of BACE1 were decreased, whereas the mRNA and protein levels of three well-known regulators of BACE1, silent information regulator 1 (SIRT1), peroxisome proliferator-activated receptor γ (PPARγ) coactivator 1α (PGC1α), and PPARγ, were increased in TCA-treated 5XFAD mice. TCA led to an improvement in AD pathology by reducing BACE1 levels through the activation of the SIRT1-PGC1α-PPARγ pathway, suggesting that TCA might be a useful therapeutic approach in AD.


Subject(s)
Acrolein/analogs & derivatives , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/toxicity , Gene Expression Regulation/drug effects , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Sirtuin 1/metabolism , Acrolein/pharmacology , Alzheimer Disease/etiology , Alzheimer Disease/pathology , Animals , Antimutagenic Agents/pharmacology , Female , Humans , Male , Mice , Mice, Transgenic , PPAR gamma/genetics , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Sirtuin 1/genetics
14.
Eur J Pharmacol ; 884: 173416, 2020 Oct 05.
Article in English | MEDLINE | ID: mdl-32721448

ABSTRACT

Severe neuroinflammation is known as a main pathology of neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). In these diseases, excessive microglial activation is one of the main causes of inflammation in the central nervous system. Therefore, inhibition of activated microglia may be suggested as a treatment for neuroinflammatory diseases. Glibenclamide, known as a therapeutics for type 2 diabetes in clinical trials has been shown to be effective in the inhibiting inflammatory conditions of various diseases. However, studies on the effects of glibenclamide for improving AD pathologies are little known. In this study, we tested glibenclamide on microglial cell line BV2 and 5XFAD mice. We found that glibenclamide significantly inhibited nitric oxide (NO) at 10 µM and 40 µM in BV2 cells induced by lipopolysaccharide (LPS) stimulation. In addition, we confirmed that 40 µM of glibenclamide reduced pro-inflammatory cytokines and proteins in the LPS-stimulated microglial cells. The anti-inflammatory effect of glibenclamide was further tested in APP/PS1 transgenic mouse. Although further analysis would be needed to confirm whether glibenclamide affects behavioral performance, our data suggests that glibenclamide may be a therapeutic option for AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Anti-Inflammatory Agents/pharmacology , Brain/drug effects , Glyburide/pharmacology , Microglia/drug effects , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Behavior, Animal/drug effects , Brain/metabolism , Brain/pathology , Brain/physiopathology , Cell Line , Cytokines/metabolism , Disease Models, Animal , Female , Humans , Inflammation Mediators/metabolism , Male , Mice, Transgenic , Microglia/metabolism , Microglia/pathology , Mitogen-Activated Protein Kinases/metabolism , Morris Water Maze Test/drug effects , Mutation , NF-kappa B/metabolism , Nitric Oxide/metabolism , Presenilin-1/genetics
15.
Alzheimers Res Ther ; 12(1): 45, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317025

ABSTRACT

BACKGROUND: Chronic neuroinflammation, aggressive amyloid beta (Aß) deposition, neuronal cell loss, and cognitive impairment are pathological presentations of Alzheimer's disease (AD). Therefore, resolution of neuroinflammation and inhibition of Aß-driven pathology have been suggested to be important strategies for AD therapy. Previous efforts to prevent AD progression have identified p38 mitogen-activated protein kinases (MAPKs) as a promising target for AD therapy. Recent studies showed pharmacological inhibition of p38α MAPK improved memory impairment in AD mouse models. METHODS: In this study, we used an AD mouse model, 5XFAD, to explore the therapeutic potential of NJK14047 which is a novel, selective p38α/ß MAPK inhibitor. The mice were injected with 2.5 mg/kg NJK14047 or vehicle every other day for 3 months. Morris water maze task and histological imaging analysis were performed. Protein and mRNA expression levels were measured using immunoblotting and qRT-PCR, respectively. In vitro studies were conducted to measure the cytotoxicity of microglia- and astrocyte-conditioned medium on primary neurons using the MTT assay and TUNEL assay. RESULTS: NJK14047 treatment downregulated phospho-p38 MAPK levels, decreased the amount of Aß deposits, and reduced spatial learning memory loss in 9-month-old 5XFAD mice. While the pro-inflammatory conditions were decreased, the expression of alternatively activated microglial markers and microglial phagocytic receptors was increased. Furthermore, NJK14047 treatment reduced the number of degenerating neurons labeled with Fluoro-Jade B in the brains of 5XFAD mice. The neuroprotective effect of NJK14047 was further confirmed by in vitro studies. CONCLUSION: Taken together, a selective p38α/ß MAPK inhibitor NJK14047 successfully showed therapeutic effects for AD in 5XFAD mice. Based on our data, p38 MAPK inhibition is a potential strategy for AD therapy, suggesting NJK14047 as one of the promising candidates for AD therapeutics targeting p38 MAPKs.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/drug therapy , Amyloid beta-Peptides , Animals , Cognitive Dysfunction/drug therapy , Disease Models, Animal , Mice , Mice, Transgenic , Microglia
16.
Neurotherapeutics ; 17(1): 189-199, 2020 01.
Article in English | MEDLINE | ID: mdl-31741224

ABSTRACT

One of the most significant pathologies of Alzheimer's disease (AD), an irreversible and progressive neurodegenerative disease that causes cognitive impairment, is the neuroinflammation facilitating the accumulation of amyloid-ß (Aß) peptide. Hence, the inhibition of abnormal neuroinflammatory response is considered a promising therapeutic approach for AD. Picrorhiza kurroa Bentham, Scrophulariae (PK) is a medicinal herb that has been traditionally used for the treatment of various diseases, including inflammation. This study aims to report the significance of PK treatment in markedly improving spatial learning memory and dramatically decreasing Aß levels in Tg6799 mice, also known 5xFAD mice, which have five familial AD (FAD) mutations. Remarkably, these effects correlated with reversal of disease-related microglial neuroinflammation, as evidenced by shifting microglia phenotypes from the inflammatory form to the anti-inflammatory form and inhibiting the nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3 inflammasome activity. Moreover, PK administration induced silent information regulator type1/peroxisome proliferator-activated receptor-γ signaling, resulting in a decrease of ß-secretase 1 (BACE1) expression, which involved in Aß production. Overall, this study suggests that PK exhibits a neuroprotective effect by inducing alternative activation of microglia and downregulating the BACE1 expression, thereby ameliorating the disease pathophysiology and reversing the cognitive decline related to Aß deposition in AD mice.


Subject(s)
Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Aspartic Acid Endopeptidases/metabolism , Inflammasomes/drug effects , Inflammasomes/metabolism , Maze Learning/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Picrorhiza , Spatial Memory/drug effects , Alzheimer Disease/psychology , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Female , Hippocampus/drug effects , Hippocampus/metabolism , Male , Mice, Transgenic , Microglia/drug effects , Microglia/metabolism , Peptide Fragments/metabolism , Signal Transduction/drug effects
17.
Nutrients ; 11(11)2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31661844

ABSTRACT

Alzheimer's disease (AD) is the most common type of dementia in the elderly. It is characterized by the accumulation of amyloid-beta (Aß) and progressive cognitive impairment. To alleviate the symptoms of AD, functional foods and nutrients have been used for centuries. In this study, we investigated whether Cuscutae Japonicae Semen (CJS), a medicinal food traditionally used in East Asia, has effects on memory improvement and synapse protection in AD. We orally administered CJS to 5x familiar AD (5xFAD) transgenic mice and performed the Morris water maze test. The results showed that CJS treatment ameliorated the decline of memory function. Then, we demonstrated that CJS attenuated the degeneration of pre- and post-synaptic proteins in the hippocampi of 5xFAD mice. To demonstrate the effects of CJS in vitro, we treated Aß in primary neuronal culture with CJS and observed that CJS rescued the loss of functional synapses. The protective effects of CJS on the synapse were due to the inhibition of activated caspase-3 expression. Additionally, CJS inhibited the phosphorylation of glycogen synthase kinase-3ß and tau proteins, which contribute to synaptic dysfunction. Taken together, our results suggest that CJS is efficient in alleviating memory loss by rescuing caspase-3-mediated synaptic damage in AD treatment.


Subject(s)
Alzheimer Disease/drug therapy , Cuscuta/chemistry , Plant Extracts/pharmacology , Plants, Medicinal , Animals , Cognitive Dysfunction/drug therapy , Female , Maze Learning/drug effects , Memory/drug effects , Mice, Transgenic , Plant Extracts/chemistry
18.
PLoS One ; 14(8): e0217194, 2019.
Article in English | MEDLINE | ID: mdl-31404072

ABSTRACT

Recently, there has been a rapid increase in studies on the relationship between brain diseases and gut microbiota, and clinical evidence on gut microbial changes in Parkinson's disease (PD) has accumulated. 6-Hydroxydopamine (6-OHDA) is a widely used neurotoxin that leads to PD pathogenesis, but whether 6-OHDA affects gut microbial environment has not been investigated. Here we performed the 16S rRNA gene sequencing to analyze the gut microbial community of mice. We found that there were no significant changes in species richness and its diversity in the 6-OHDA-lesioned mice. The relative abundance of Lactobacillus gasseri and L. reuteri probiotic species in feces of 6-OHDA-lesioned mice was significantly decreased compared with those of sham-operated mice, while the commensal bacterium Bacteroides acidifaciens in 6-OHDA-treated mice was remarkably higher than sham-operated mice. These results provide a baseline for understanding the microbial communities of 6-OHDA-induced PD model to investigate the role of gut microbiota in the pathogenesis of PD.


Subject(s)
Adrenergic Agents/pharmacology , Bacteria/classification , Feces/microbiology , Gastrointestinal Microbiome/drug effects , High-Throughput Nucleotide Sequencing/methods , Oxidopamine/pharmacology , RNA, Ribosomal, 16S/genetics , Animals , Bacteria/genetics , Gastrointestinal Microbiome/genetics , Male , Mice , Mice, Inbred ICR
19.
Biomed Pharmacother ; 111: 1359-1366, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30841450

ABSTRACT

Abnormal inflammatory response in the central nervous system plays a critical role in various neurological disorders such as Parkinson's disease, Alzheimer's disease and Huntington's disease. Therefore, modulation of abnormal neuroinflammation is thought to be a promising therapeutic strategy for these diseases. Based on this idea, we focused on finding a potential candidate material that would regulate excessive neuroinflammation. Iresine celosia has long been used as a traditional Mexican medicine to treat fever and oral disorders. In the present study, we evaluated the anti-neuroinflammatory effects of Iresine celosia extract (ICE) in lipopolysaccharide (LPS)-stimulated BV2 microglia cells and mice models. In BV2 microglia cells, ICE markedly inhibited production of nitric oxide and proinflammatory cytokines such as tumor necrosis factor-α, interleukin-1ß, and interleukin-6 without causing cytotoxicity. ICE also ameliorated translocation of nuclear factor-κB from cytosol to nucleus by LPS. Moreover, ICE attenuated behavioral disturbances by inhibiting activation of microglia and astrocytes in LPS-treated mice. Collectively, these data indicate that ICE is a potential therapeutic agent for treating inflammation-related diseases.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Celosia/chemistry , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Microglia/drug effects , Plant Extracts/pharmacology , Animals , Astrocytes/drug effects , Astrocytes/metabolism , Cell Line , Cytokines/metabolism , Inflammation/metabolism , Medicine, Traditional/methods , Mice , Mice, Inbred C57BL , Microglia/metabolism , Nitric Oxide/metabolism
20.
Neurochem Res ; 43(12): 2362-2371, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30327995

ABSTRACT

Neuroinflammation is an important pathological feature in neurodegenerative diseases. Accumulating evidence has suggested that neuroinflammation is mainly aggravated by activated microglia, which are macrophage like cells in the central nervous system. Therefore, the inhibition of microglial activation may be considered for treating neuroinflammatory diseases. p38 mitogen-activated protein kinase (MAPK) has been identified as a crucial enzyme with inflammatory roles in several immune cells, and its activation also relates to neuroinflammation. Considering the proinflammatory roles of p38 MAPK, its inhibitors can be potential therapeutic agents for neurodegenerative diseases relating to neuroinflammation initiated by microglia activation. This study was designed to evaluate whether NJK14047, a recently identified novel and selective p38 MAPK inhibitor, could modulate microglia-mediated neuroinflammation by utilizing lipopolysaccharide (LPS)-stimulated BV2 cells and an LPS-injected mice model. Our results showed that NJK14047 markedly reduced the production of nitric oxide and prostaglandin E2 by downregulating the expression of various proinflammatory mediators such as nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α and interleukin-1ß in LPS-induced BV2 microglia. Moreover, NJK14047 significantly reduced microglial activation in the brains of LPS-injected mice. Overall, these results suggest that NJK14047 significantly reduces neuroinflammation in cellular/vivo model and would be a therapeutic candidate for various neuroinflammatory diseases.


Subject(s)
Inflammation Mediators/metabolism , Lipopolysaccharides/toxicity , Microglia/metabolism , Protein Kinase Inhibitors/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Cell Line , Dose-Response Relationship, Drug , Imidazoles/pharmacology , Imidazoles/therapeutic use , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Inflammation Mediators/antagonists & inhibitors , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Protein Kinase Inhibitors/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...